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Abstract—Near-real-time water quality monitoring in rivers,
lakes, and water reservoirs of different physical variables is crit-
ical to protect the aquatic life and to prevent further propagation
of the potential pollution in the water. In order to measure the
physical values in a Region of Interest (ROI), adaptive sampling
is helpful as an energy- and time-efficient technique since an
exhaustive search of an area is not feasible. Adaptive sampling
using one robot is subject to the many constraints, such as a
single point of failure, energy and delay inefficiencies. A robot
could run out of energy midway during adaptive sampling–when
scanning a large area, the sampling could take a long time even
with adaptive sampling. If the robot doing the sampling fails,
then the entire data is lost. To rectify these issues, we propose
a distributed adaptive sampling algorithm using multiple robots.
The algorithm ensures energy efficiency and time efficiency
while also ensuring higher accuracy in the measurement by first
specifying regions of interest, afterward, allocating a team of
robots to search these regions more thoroughly without colliding
or redoing work of another robot. By nature, the algorithm also
accounts for a robot failure. Experiments are conducted in the
Raritan River, New Jersey to evaluate the proposed solution.

Index Terms—Autonomous Vehicles, Distributed adaptive sam-
pling, Underwater Networked Robots, Robot Coordination.

I. INTRODUCTION

Overview: Underwater networks enable various
applications such as oceanographic data collection, pollution
monitoring, disaster prevention, and tactical surveillance using
static nodes or mobile vehicles [1]–[4]. In our case, we need
mobile vehicles rather than static nodes in order to traverse
the area and measure the differences in the measured values
across this given area. Static nodes pose many limitations
on data collection. Because of their nature, we would need
multiple static nodes in order to accurately reconstruct a map
of an environment. Static nodes are not helpful in order to
track areas of pollution throughout a body of water either.
We will use autonomous vehicles for our data collection [5].
There are multiple classes of autonomy. Fully autonomous
vehicles are able to completely control their movement and
trajectory without any outside input. On the opposite end,
ROVs are completely human controlled. In the middle of
these lie semi-autonomous vehicles. Semi-autonomy is a
broad scale of measurement. A robot that holds it’s heading
constant while all other aspects are human controlled is
considered semi-autonomous while a robot that controls most
aspects of it’s motion save one or two (such as obtaining
the initial movement path) is also semi-autonomous. We
aim to make our robots semi-autonomous in the sense that
when the command to conduct sampling is sent to them, they

are able to completely conduct sampling on their own and
coordinate between themselves automatically. Underwater
Remotely Operated Vehicles (ROVs) are used to monitor and
investigate conditions in water. For example, ROVs could be
used to measure the salinity in regions in a river or it could
be used to visually see underwater structures to gain a deeper
understanding of marine science. Sampling is the process of
obtaining some measurement within the water. For example,
a robot can conduct sampling by measuring pH in the river.
Other values that can be measured in a body of water include
temperature, salinity, conductivity and turbidity. But, sampling
is exhaustive if we want to reconstruct an accurate map of
the area. For efficiency, we use adaptive sampling which
changes the exhaustive degree of search being performed at a
given point based on the measured values around that point.
Normally, adaptive sampling works by searching an area by
identifying points of interest and searching those points more
thoroughly. A traditional adaptive sampling method involves
doing some predefined path and then narrowing the width of
the path in regions of interest. Adaptive sampling is normally
used for one mobile vehicle. But, using one vehicle offers
issues especially in terms of energy. Each vehicle has limited
energy so for a large area, it might not be able to scan it
completely even with adaptive sampling. Then, there arises
the problems with time since sampling will take a long time.
For time critical applications, this method is not helpful.

Motivation: As discussed above, we want to use mobile
vehicles (ROVs) to enable data collection in a body of water.
ROVs are also manually controlled which raises issues in
communication. The issue arises of how to identify regions
of interest. The ROV must be sending the data back and then
the person has to define regions of interest and move the robot
there. There is a lot of human error in this case, not to mention
a lot of human effort, especially for multiple vehicles. We
want to computationally solve this issue by allowing vehicles
to make decisions on their own and amongst themselves.

Our Vision: In order to rectify the aforementioned issues
with adaptive sampling, we propose a solution using a team
of robots to conduct sampling. We will call this distributed
sampling since we are using a distributed team of machines
to share a workload. In order to achieve this goal, we will have
to create an algorithm in order to distribute the work among
the robots. Because we want the robots to be autonomous, we
will allow the robots to communicate among themselves using
a communication protocol we design.
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Fig. 1: Current delivered by the battery to the robot.

Contribution: We want to make the robot autonomous in
order to conduct adaptive sampling without external input. We
are using a team of robots. First, a map of the environment is
needed. Second, once a map is obtained, we need to identify
regions of interest. Then, these regions of interest must be
searched in parallel by the team of robots. We propose net-
working the robots together in order to achieve the distributed
workload without issues like collisions. The algorithm we
define must also be energy efficient and time efficient while
also allowing a sufficient search of the environment. This paper
discusses the communication protocol that allows coordination
between the robots, the distributed sampling algorithm and the
analysis of the energy and time efficiency of the algorithm.

Report Organization: The remainder of the report is
organized as follows. In Sect. II, we go over the state-of-
the-art and similar research in the literature, and then define
the problem. In Sect. III, we present our proposed solution
for underwater distributed adaptive sampling using multiple
vehicles and. In Sect. IV, we present the experimental results
and discuss the benefits of implementing our solution. Finally,
in Sect. V, we draw the main conclusions.

II. PROBLEM DEFINITION

In the underwater environment, searching and investigating
water characteristics such as temperature, salinity, acidity, con-
ductivity, pH, dissolved oxygen, and turbidity is a necessity,
which motivates applying either data driven or model driven
adaptive sampling strategies. There are many issues that arise
with adaptive sampling from a technical standpoint. In many
applications, the energy budget and the time are limited.
Multiple searches of the same area require more energy and
obviously require more time. Figure 1 shows that the average
current delivered by the battery is around 1.5-2 A which is
rather high. Note that this value is independent of whether we
use distributed sampling or adaptive sampling. Thus, in order
to actually reduce our energy consumption, we will have to
optimize other parameters.

We can use a signal reconstruction method to reconstruct the
signal in the water given a minimum number of points. Pompili
et. al. discuss reconstruction of a map given the minimum

number of points using RCS [6]. K-SVD is a dictionary
learning algorithm that is used for creating a dictionary from
sparse data and is used prevalently in image processing.
Thus, we can accurately recreate a map without necessarily
commiting to an exhaustive search of the environment. Our
aim is to decrease the energy usage. In order to do so, we
will need to minimize the distance traveled and the time that
the sampling occurs in. The parameters that our algorithm will
depend on will be distance to travel, time to travel and current
battery levels. Task allocation between multiple robots will use
these parameters to optimize the energy used between robots.
For example, if two robots are considering an area to search,
the algorithm will use these parameters to determine which
robot should be allocated this task and ideally, the robot with
the least energy expenditure will be allocated the task.

An underwater environment also poses many constraints
on navigation. We are unable to use the Global Positioning
System under water or use any type of electromagnetic
communication. Thus, we need to either remain on the
surface or use sonar based communication underwater. Even
on the surface, the GPS is not necessarily accurate and
occasionally, the signal is lost due to the currents and waves
in the water. We want our algorithm to account for these
issues as well. One solution is to use an IMU for localization
in lieu of GPS. However, an IMU is very noisy and is not
useful for localization by any means. The IMU, however, is
very useful for orienting and stabilizing the robot. In order
to rectify this, we propose a hybrid solution using both GPS
and IMU where the IMU is used for orientation and the GPS
is used for location. When GPS signal is lost, we switch to
IMU integration. The error should be low since we are not
using the IMU for a long time but, rather for a couple of
seconds. There are also many other issues associated with
an aquatic environment. While navigating, a lot of error and
deviation can occur due to (strong) currents and waves. We
need to account for this error using control loops.

Another challenge faced in an aquatic environment is that
the vehicles are prone to failure. It is very easy for a robot to
get something stuck in it’s motors resulting in motor failure,
and ultimately, robot failure. Thus, our algorithm must also
account for robot failures as well.

Now, that we discussed the challenges faced by the mobile
vehicles, let us discuss the vehicles themselves and their
hardware. The robot which we exploit is a BlueROV2 made by
BlueRobotics [7] (Fig. 2(a)). The BlueROV is outfitted with
4 horizontal motors and 2 (4) motors for vertical movement
in the regular (heavy) structure. The upper portion of the
BlueROV is outfitted with four buoyancy foams. Each motor
is connected to an ESC which is in turn controlled by the
Pixhawk (Fig. 2(b)). A Pixhawk is an open hardware, autopilot
flight controller. [8] The Pixhawk also incorporates sensors
such as an IMU, gyroscope and a magnetometer. The IMUs
on the Pixhawk consist of: an ST Micro L3GD20 3-axis 16-bit
gyroscope, ST Micro LSM303D 3-axis 14-bit accelerometer
/ magnetometer and an Invensense MPU 6000 3-axis ac-
celerometer/gyroscope. The Pixhawk in turn is connected to a
Raspberry Pi. The Raspberry Pi runs a preconfigured Raspbian
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(a) (b)

Fig. 2: (a) BlueROV2 [7], the vehicle (initially an ROV) which is
used in this project. We program it to perform in the autonomous
mode; (b) The Pixhawk controller [8] used in this project.

TABLE I: The hierarchy of the layers of autonomy.

Layers of autonomy Functionality
5 Route planning
4 Localization
3 Stability and error control
2 Directional movement
1 Individual motor control

image based on Ardusub. [9] The Raspberry Pi is the main
computational processor on the BlueROV. All computation
and control is directed by the Pi. The Raspberry Pi allows
control of the robot through a communications protocol known
as MAVLink which allows communicating with unmanned
vehicles. [10] MAVLink sends commands to the Pixhawk
which in turn does some specific action based on the command
received. Non-mechanical sensors, such as a conductivity
sensor, interface directly with the Raspberry Pi. These sensors
are controlled through a serial interface. The BlueROV is also
outfitted with a ping echosonar sensor from BlueRobotics.
The echosonar is connected directly to the Raspberry Pi and
interfaces through a serial port. The BlueROV2 is also outfitted
with an HD camera attached to a servo motor. However, for
our case, we are not using this specific hardware. The hardware
of interest to us is primarily the motors (for movement), the
Pixhawk for control of the motors and for IMU data, and the
Raspberry Pi for an interface. All of these components will
allow us to make the ROV autonomous.

Layers of Autonomy: In order to make the robot
autonomous, we define layers of control for the robot in order
to allow the robot to be fully autonomous. Each layer can
access the data and control loops from the layers below it.
This design leads to a highly scalable, flexible autonomous
system. Each layer can be built on top of another, abstracting
the layers below. Consider the similarities between this design
and the TCP/IP stack.

As seen in Table I, the layers of autonomy increase in
complexity and functionality. Each layer depends on the
abstractions of the previous layers for implementation.

The first layer of control, as seen in Table 1, we define
as individual motor control. In essence, this layer involves

Fig. 3: The convergence of the error using the PID loop along with
energy usage compared with angular speed.

the ability to control individual motors. This control is im-
plemented by the the Pixhawk flight controller and is not a
layer we can access. This layer allows us to control the motor
speed.

The second layer is what we define to be directional
movement. This layer of control is implemented for us by
ArduSub. Each direction of movement is associated with a
channel and we are able to directly control the speed of
each channel using MavProxy (a proxy for MavLink). This
layer allows us to incorporate the built in channel controls in
MAVLink to control the directional movement of the robot.

The third layer is what we define to be the control layer.
The control layer involves using control loops to make the
robot account for errors and also to allow it to obtain a
desired target with regards to movement. To explain further,
we use control loops to allow the robot turn a certain
number of degrees, or allow it to move a certain number
of meters, and also allow the robot to move straight when
encountering currents or drift. Specifically, we are using
PID loops in order to guarantee this. This layer relies on
PID loops using data from the motion related sensors on
the robot (gyroscope, IMU, magnetometer and GPS). The
robot should be able to keep a certain trajectory using these
sensors and control loops. When we ran tests, we found that
as the robot moved forward, it tended to drift to the right
considerably more than was normal. In order to rectify this,
we used a PID loop to correct the orientation of the robot
and the drift based on the compass heading. Fig. 3 shows a
graph showing the energy usage of the PID loop. When the
error in heading increases, the loop adjusts the Z-axis angular
speed of the ROV. The current delivered by the battery is
fairly consistent throughout, implying that there is not a
large energy expenditure associated with the PID control loop.

The next layer involves distance metrics. Let’s call this
the localization layer. Because we can make the robot move
forward, turn and move vertically using the channel controls
and the PID loops, we should be able to theoretically be able
to do any three dimensional maneuver. The localization layer
takes into account the IMU, in case there is no GPS, and
the GPS in order to accurately control the movement of the



FINAL REPORT, INDEPENDENT STUDY, JULY 2019 4

robot for a specified distance in a two dimensional plane.
Specifically, the layer by default uses GPS for localization
but in the case of no localization, the IMU is used instead.
Localization is found through the IMU using integration prin-
ciples. For vertical movement, the distance from the seafloor is
measured using a ping echosonar module. For turns, a compass
is used to ensure accuracy. On top of the localization layer,
we have implemented a route planning layer which is part of
our distributed sampling algorithm that we will discuss later
in this report.

The next layer involves the robot making more higher
level decisions of it’s trajectory based on sensor data with
regards to the water (i.e. conductivity, temperature, salinity,
etc.). Let us call it the route planning layer. We would have
to define some route planning algorithm built on top of the
previous layer in order to achieve this. This algorithm is the
distributed sampling algorithm we discuss in this paper. With
this layer, we can safely state the robot is mostly autonomous
since the robot can make it’s own decisions about where to
go and reach that destination without any outside input. In
this layer, for our purposes, we are using sensors such as
salinity, conductivity, temperature and pH to identify regions
of interest and move to that area.

Our goal is to have a team of autonomous robots all
sharing the tasks of sampling between themselves. As a
result, there must be coordination between all of the robots to
prevent collisions and to prevent redundant work being done.
Thus, as part of the route planning algorithm, we must add a
communication protocol for all of the robots to allocate tasks
efficiently amongst themselves. This communication protocol
is explained further in the paper.

Related Work: Previous work on adaptive sampling pri-
marily uses one robot. A previous proposed method was using
SLAM to conduct adaptive sampling. The method consisted
of a static node and a mobile vehicle. SLAM was used to
adjust the trajectory of the robot. The sampling involved
two phases. The first phase involved sampling the area with
equal spacing. Phase two used the values from phase one
and adjusted the spacing based on the change in sampling.
Thus, for an area with higher change, there were more data
points. [3]. Our proposal involves robots on the surface so
we use the Global Positioning System(GPS) instead. Another
method using adaptive sampling involved taking the map of
the environment and gridding the map. Then, allowable path
points were found based on the distance to these points [11].
A previously proposed solution on cooperation between robots
in terms of adaptive sampling was proposed by E. Fiorelli.
The coordination between these robots was based on Virtual
Body and Artificial Potential. Basically, there is an artificial
potential between each pair of vehicles. The path planning of
each robot is based on gradient climbing. [12]. A previous
paper on distributed sampling uses multiple AUVs to follow
a predefined path in parallel without communication between
the robots. The process involves two phases. In the first phase,
the AUVs traverse the area using a traditional lawnmower-
style trajectory. Phase two involves the AUVs adaptively

scanning the area by reducing the width of the lawnmower
path based on sensor data. The second phase is run multiple
times and the sampling done in the previous run is used to
determine the sampling in the current run. The map of the
region is then reconstructed using either Random Compressive
Sensing (RCS) or Deterministic Compressive Sensing (DCS)
techniques which reconstruct a signal given minimal samples
[6]. The algorithm was optimized for energy efficiency and
error minimization of multiple vehicles. [13]. A previous paper
discussed the use of layered control for AUVs. The layered
control used was known as subsumption architecture whereby
each hierarchical layer could access data from layers below it
and also influence those layers. For their solution, they gave
each robot a predefined behavior. For mapping, each vehicle
was given a feature map and a visitation map. The visitation
map held all the points visited and the feature map held all
locations where a feature of interest was detected [14]. Robot
coordination is an interesting, hot topic. A recent paper on
multi-path robot coordination. The paper involves n robots
each starting at an origin and going to a goal specific to that
robot. The goal of the algorithm was to minimize collisions.
In order to do that, a rapidly-exploring random tree(RRT)
was used. The algorithm found the distance from one point
to a random point such that no collision occurred. From
that random point, the process continued and the algorithm
found a path to another random point such that no collisions
occurred. In order to prevent conflicts and deadlocks of robots,
synchronization of robots had to occur. Specifically, one robot
waited until the other finished moving a shared path [15].
Yan et. al. [16] discuss communication and path planning
between multiple robots. They discuss the two different kinds
of communication, explicit and implicit communication. Im-
plicit communication is interactions between robots, but the
robots are not sharing data with each other. For explicit
communication, three different approaches were discussed.
The approaches were a market based approach, an auction-
based approach and a trade-based approach. Each approach
involves a buyer and a seller. Our approach is a mix of a trade-
based approach and a market based approach. Evangeline et.
al. discuss task allocation between multiple wireless sensor
networks based on criteria of energy, tima quanta, queue length
and sequence tables [17].

III. PROPOSED SOLUTION

In this section, we propose our solution for distributed
adaptive sampling using multiple vehicles.

For our solution, we propose to split our distributed sam-
pling process into two phases. First, we section the area into
equal regions so that each vehicle can traverse this region in
a lawnmower fashion. As each vehicle is traversing the area,
the vehicle records sensor data from the sensors outfitted on
the robot. With the values obtained from the sensors, we can
create a map of the region. We can define regions of interest
(ROI) that we want to further explore. Once the traversal is
finished, each robot has to broadcast the map of it’s region to
the other vehicles to obtain a global map of the environment.

Now, we would begin phase two of our process. For
this phase, we need to allocate the regions of interest(ROI)
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to different vehicles. Each vehicle will further search these
regions leading to an overall more accurate map. After all
vehicles have received the map and regions of interest, each
vehicle can begin searching ROI. Each vehicle will find the
closest region of interest to it. Next, each vehicle will broadcast
it’s decision to go to that region along with the distance it
has to travel to go there. If another vehicle is going to that
region at the same time and can reach that region in a shorter
distance, the other vehicle will notify the other robots that it
can go there faster. The other vehicle will then broadcast to
other robots it’s choice to go that region and the cycle will
repeat. If no robots notify the others that they can go there
faster within a given time interval, the vehicle will send a
packet stating that it assumes that all robots have reached a
consensus to allow it to go to that region of interest. After
all ROI are explored, each robot will share it’s map with the
others to obtain a global map.

A. Phase 1: Initial Exploration

For phase 1, our first task is to split an area into equal
subsections for each vehicle to traverse. For this part, we
assume that the area is given, is rectangular and is bounded.
Consider an area A. We want to split A into n regions such
that for all n vehicles, each vehicle will optimally search it’s
given region in terms of time and energy. For the ith vehicle,
consider the cost of searching it’s region to be the cost, ci. We
can prove that the optimal way to split the area into subsections
is to split the area equally into n regions. Assume that the ith

vehicle searches region ri and the jth vehicle searches region
rj . The cost of exploring ri is ci and the cost of exploring
rj is cj such that cj > ci. This is not an optimal solution
because the jth vehicle has a larger energy expenditure that
the ith vehicle. The total distance traveled cumulatively by
all vehicles should remain near constant which implies that
the total cumulative energy expenditure should remain near
constant as well for this phase. Thus, an algorithm that creates
unequal subsections of the area is non-optimal because on
vehicle will have a higher energy expenditure than the other.
Once the area is split into subsections, each vehicle traverses a
lawnmower path of the subsection. During this traversal, each
vehicle collects data through the on-board sensors. For this
task, we need to employ autonomy to the vehicle.

Autonomy: As was discussed previously, we propose mul-
tiple layers of autonomy for the ROV with each hierarchical
layer being more complex than previous layers and being
able to use functionality and modify parameters within the
previous layers. As seen in Table I, layers 1 and 2 are
implemented within the Pixhawk and related firmware. What
we are concerned with are the more complex layers. Later on
in the paper, we will discuss layer 5 of autonomy.

Layer 3 is the error control layer. In this layer, we use PID
loops to control the orientation of the vehicle. The vehicle
has a tendency to drift while moving forward so the PID loop
accounts for these errors. The PID loop prevents deviation
in the heading to ensure accuracy of movement. We also
propose a control loop to ensure we reach our destination.
Every second, we correct our trajectory if needed to ensure
we reach our destination.

Map Reconstruction: Once each vehicle finishes traversal
of it’s allocated subsection, all of the maps of the subsections
must be shared between robots in order to construct a global
map of the environment so that each robot has this map for
the next phase. As a solution, we use K-SVD in order to
share the maps. Bajwa et. al. propose a distributed cloud K-
SVD algorithm that uses an iterative process to generate a
dictionary. We will use this algorithm in order to create a map
when all of the robots share data with each other.

B. Phase 2: Task allocation

After phase 1 is completed, the ROI have to be allocated
to each vehicle. For this phase, we want to minimize the
distance each robot has to traverse in order to minimize the
total time and energy expenditure. In order to do so, we
necessitate a task allocation protocol for coordination between
the vehicles. In order for the team of robots to distributively
split the work, they have to decide how to split the work
while also deciding which robot is allocated which task.
We propose a real time, on-the-fly task allocation. In this
sense, each robot knows only it’s current task and possibly
it’s next task. In order to implement this task allocation, we
implement coordination between the robots which necessitates
the design of a communication protocol. In order for the
robots to communicate with each other, we use the Raspberry
Pi’s on the robot and connect them to each other creating a
communication link between robots.

Let us call the communication protocol Distributed
Sampling Protocol (DSP). The protocol must allow for
multiple types of communication. First, the protocol must
allow for the robots to communicate the map and the regions
of interest with each other. Second, the communication
protocol must allow the identity of the sender of the packet
to be known. Third, the protocol must prevent collisions
between robots. Fourth, the protocol must prevent redundant
work (e.g. searching the same region twice). Finally, the
protocol must allow for task allocation based on energy in a
robot, distance a robot has to travel and time that will be used.

ACK, NAK, REQ, MAP, CON, FIN
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Latitude

Longitude

Robot ID

Flags Requested Sector

Request ID

Distance to Sector

Origin Latitude

Origin Longitude

Height of Area

Width of Area

. . . optional Regions of Interest (variable size)
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For the protocol, we define a header—with the size of 40
bytes—which will contain all of the necessary information.
Based on the necessary features described above, we will
need certain values in the header. The header will contain the
following fields:

Latitude, Longitude, Robot ID, Flags, Request ID, Re-
quested Sector, Distance to Sector, Origin Latitude, Origin
Longitude, Height, Width

There will be an optional payload for sharing the regions
of interest. We will not need to share ROI much so this is not
part of the header.

The fields of latitude and longitude are necessary fields.
When a robot broadcasts a packet with it’s location, there must
be fields in the header for location. A robot must broadcast it’s
location regularly in order to prevent collisions between robots
and to prevent redundant work from being done. The packet
that a robot sends with it’s location must allow identification
of the robot. Otherwise, it would be impossible to distinguish
the locations of any robot. Flags allow us to specify the type of
data we are sending an enable acknowledgments and refusals.
Next, we have the fields related to requests. For requests, a
robot needs to request a sector to search and needs to pass the
distance to that sector. The distance is necessary because if a
robot is currently planning on going to that sector and will be
able to go in a shorter distance, then priority is given to that
robot. Because we will be using multiple robots, we risk the
chance of multiple robots sending requests at the same time.
Thus, to distinguish between requests and any replies to the
requests, we use a request ID. Next, we have headers related
to the map. For simplicity, we define our area that we search
to always be rectangular in nature. We define our map with
an origin which is defined by it’s latitude and longitude, and
the width and the height of the area. These four parameters
sufficiently give the area and the boundaries of the area.

Next, we have to allow for sending the regions of interest
when a robot broadcasts the map to the other robots. This data
can be sent as an additional payload attached to the header.
The size of the payload will be variable depending on the
number of regions we have.

A flag notifies the receiver of the kind of data in the packet.
A flag is a signaling mechanism. Our first flag is an ACK.
This flag is used by robots to send an acknowledgement to
other robots of some data that might be received or some
decision that was decided upon.

The second flag is the NAK. The NAK is used for robots
to communicate that they received a packet, but do not
agree with the decision or information related to the packet.
Primarily, the NAK will be used by a robot to contest a
decision during requests. For example, say robot 1 broadcasts
it’s decision to go to sector 2, which is 10 meters away, to
search that region further. When a robot wants to request a
sector, it sets the flag to REQ. The robot also has to use a
unique request ID so that the request can be tracked by all
robots. Robot 2 receives this packet and at the same time, is
also considering going to sector 2 which is 5 meters away.
Robot 2 realizes it can reach sector 2 in a shorter distance
which allows it to use less energy and get there quicker. So

Robot 1 Robot 2 Robot 3

REQREQ

CONCON

NAK not received

Fig. 4: The sequence diagram for when consensus is reached.

Robot 1 Robot 2 Robot 3

REQREQ

NAK

NAK received

Fig. 5: The sequence diagram for when consensus is not
reached.

robot 2 broadcasts a NAK with the respective request ID.
The requesting robot then finds another region of interest to
search. The robot that broadcasted the NAK has to broadcast
it’s own request. The NAK just prevents other robots from
searching the area.

The CON flag is also used in the context of requesting
sectors. If a NAK is not received within a given time frame,
the robot that initially broadcasted the request broadcasts
a CON with the respective request ID to all robots in the
vicinity. A CON flag denotes the assumption that no other
robot can reach that sector more quickly and in a shorter
distance. Thus, it is assumed that all robots agree on the
requesting robot to go to the desired sector and that a
consensus is reached in that regard. Once a robot has no
other regions that it can search further, it broadcasts a FIN
letting all other robots know that it is done sampling. Once
the battery level of a robot goes below a certain threshold,
the robot will also send a FIN after finishing up it’s current
task and stop sampling.

To send the map to all robots, the MAP flag is set in the
packet that was broadcast and the map is broadcast using the
origin longitude, origin latitude, height and width and regions
of interest fields. The first four parameters map out the area



FINAL REPORT, INDEPENDENT STUDY, JULY 2019 7

Fig. 6: An example situation of the request mechanism.

including the boundaries of the area. The regions of interest
is an optional payload that defines the regions we want to
search further. If this payload is not supplied when the map
is shared between robots, then the robots assume there are no
regions of interest to search.

Since we want to prevent robots from colliding, we want
every robot to know the location of all other robots. In order
to do this, each robot must broadcast it’s location to all other
packets. Each robot must do this regularly for all robots to
have up to date information. However, we do not want to
broadcast a location packet so often that we cannot transmit
other data packets. Thus, every four seconds, each robot
will broadcast a location packet with it’s current latitude and
longitude to all robots in the vicinity.

This protocol is highly scalable. In the case of many robots,
such that each of them cannot communicate with all others,
we split that area into smaller subsections with robots assigned
to a subsection. In the subsection, we can use our algorithm
and communication protocol for distributed sampling.

C. Distributed Sampling

We have so far defined the communication protocol which
allows for our distributed sampling algorithm to run. Now, let
us define our algorithm.

The first step in the algorithm involves creating a map of the
environment. The map of the environment involves bounding
the area we are going to search by the origin point and the
width and height of the area. However, since we are conducting
sampling, we also need a map of the values at points in this
area. In order to obtain this map of values, we will have each
robot traverse a sectioned area in a lawnmower path. As the
robot traverses the path, it will record the measurements at
all points it traverses along with the latitude and longitude of
those points.

Once each robot has the map of the environment, each
robot needs to define regions of interest to search further.
These regions of interest could be regions with relatively high
values or relatively low values. We standardize our definition

of relatively low and high values to be any value that is within
10% of the maximum and minimum values recorded in the
area. Regions of interest could also be regions with a high
gradient. In order to define regions with a high gradient, we
will have our initial vehicles that does the lawnmower path
find the maximum and minimum values in the area. Since the
vehicle has knowledge of the coordinates and the values at
the coordinates, the vehicle can calculate the gradients within
a certain distance. If the gradient is 40% or greater across a
distance that is 5% of the area, then we mark that as a region
of interest.

Once the regions of interest are defined, each robot will
broadcast the local map and the maps, including the ROI, will
be joined using Cloud K-SVD.

Once all robots have received the global map, we are
ready to begin distributed sampling. For distributed sampling,
we define a greedy algorithm approach. The goal of our
algorithm is to minimize our energy usage while maximizing
our data points. In order to minimize our energy use, we
minimize the distance each robot travels. We also only allow
a robot to move if it’s battery level is above a threshold, 20%.

For distributed sampling, each robot will allocate to itself
one region to search after all robots have reached a consensus
on which explores a certain region as defined in the commu-
nication protocol. Once this region is allocated to a robot, the
robot will go to the region and search it further. When the
robot finishes searching this region, it moves on to another
region.

The robot determines which region it wants to go to next
by factoring in the distance it has to travel to that region. Each
robot knows it’s own coordinate position and also knows the
coordinates of all regions of interest. The robot can easily
calculate the distance from itself to all region of interest
and quickly find the region closest to it. Because each robot
chooses the region closest to it, we minimize the distance
traveled and thus minimize the energy used.

When a robot broadcasts a REQ to go to a certain region,
another robot can contest that and send a NAK if it can go
to that region more in a shorter distance and is currently idle.
In this case, the algorithm chooses the robot that can move
a shorter distance to go to that region of interest. Thus, the
algorithm also ensures energy efficiency of the entire system,
not just individual robots. However, if a robot can go to that
region in a shorter distance but is currently preoccupied with
another task, the algorithm chooses the robot that broadcasted
the REQ to go to that position. As a result, we ensure that
no robot remains idle for a long period of time which helps
ensure energy efficiency as well. The algorithm ensures that
the sampling finishes as quickly as possible, reducing the
energy consumed by minimizing the time used for sampling.

1) Proof: This algorithm is optimal for energy efficiency
because each robot moves the minimum distance it can travel
by moving to the closest region to it’s position.

Consider each task to have cost Ci denoting the energy and
time expenditure. The cost is a function of the current energy
remaining for the vehicle and the distance traveled. Consider
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a region Rk. For all vehicles 1 to n, let the cost of exploring
this region be C1, C2, ...Ci, ...Cn. We want to find a vehicle i
that minimizes the cost such that Ci < Cj∀j 6= i. By finding
a Ci that is minimal, we can optimally explore region Rk. For
all regions, we can optimize the cost associated with exploring
a region. By minimizing the cost of exploring one region, we
minimize the sum of the costs of exploring all regions. Since
our algorithm is time based and energy minimizing we thus
minimize our energy and time expenditure.

IV. PERFORMANCE RESULTS

Fig. 7: A temperature map of the environment mapped with a
lawnmower path.

Fig. 8: A temperature map of the environment mapped with a
square path.

Consider figures 7 and 8. The data corresponding to these
figures was found within an twenty minutes of each other.
Thus, the data obtained should theoretically be very similar.
From the maps, it is clear that the data obtained from the
lawnmower path is far more accurate and comprehensive
compared to the square path. The square path only obtains data
for the perimeter and the data is concentrated. The lawnmower
path, on the other hand, gives a more comprehensive, accurate
map of the environment.

Fig. 9: A map with the regions of interest shown in white.

Algorithm 1: DistributedSampling(area, vehicles)
Result: Map of environment
n ← len(vehicles);
V[] ← vehicles;
data ← [];
R[] ← section area into N regions;
for i = 1...n do

Let V [i] traverse R[i] in lawnmower fashion;
append collected data to data;

end
ROI ← [];
for data do

S ← STDDEV(data);
Mean ← MEAN(data);
Max ← FINDMAX(data);
Min ← FINDMIN(data);
Diff ← Max − Min;
for Region in data do

if abs(Region−Max) < 0.1 ∗Diff OR
abs(Region−Min) < 0.1 ∗Diff then

ROI.append(Region);
end
gradient ← CalcGrad(Region);
if gradient >= 40% and
dist >= 0.5 ∗ size(area) then

ROI.append(Region);
end

end
end
for each robot do

packet ← ROI, data;
Broadcast packet;
for packets received do

ROI.append(packet.ROI) using K-SVD;
data.append(packet.data) using K-SVD;

end
end
while len(ROI) > 0 do

distance, region ← find closest region from ROI;
packet ← region,distance;
Broadcast packet;
if packets received then

if region == packet.region and distance <
packet.distance then

broadcast NAK;
end

end
if NAK received then

continue;
else

explore region;
end

end
for each robot do

packet ← data;
Broadcast packet;
for packets received do

data.append(packet.data) using K-SVD;
end

end
return data;
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Figure 9 shows the regions of interest allocated after phase
I traversal of the area. These regions were found using the
criteria discussed above.

Fig. 10: A map with the allocated regions of interest.

Figure 10 shows the regions that were allocated to each
vehicle. The white regions were allocated to ROV 1 while the
green dot regions were allocated to ROV 2. As is evident, the
regions that ROV 1 searches are very close to each other and
the same is true for ROV2.

Fig. 11: Distance traveled.

Figure 11 shows the distance traveled by each robot over-
time as they explore each region of interest. It is clear that the
distance traveled from one region to another increases as the
number of regions explored increases. In the beginning, the
robots move less distance. But as time goes on, the regions
become much more spread out. The regions explored later on
are by nature farther away.

V. CONCLUSION AND FUTURE WORK

The algorithm described in this paper allows for dynamic,
distributed sampling with an aim of reducing energy usage
while also attempting to get the most useful data from an
environment. The algorithm is scalable and useful for many
purposes. In terms of future work, there are many direction in
which this project can go. First and foremost, we can add
a Markov Decision Process to the task allocation to more
intelligently allocate tasks. In phase I, during the exploration,
instead of allocating equal regions to each vehicle, we can give

each vehicle a certain behavior. Based on this behavior, we can
explore the area at large. Then, for phase 2, we can establish
relationships between robots based on behaviors. That is,
we can have some robots be curious and search unexplored
areas, while other robots are safer and only search perimeters.
Then, during phase II, we can let the robots allocate tasks
based on what we defined previously and also based on their
behaviors. To implement behaviors, we can give each robot a
risk coefficient which defines the level of risk they are willing
to take.

We can also add sound based communication and USBL.
These features will enable the vehicles to accurately monitor
their locations and the locations of other vehicles in the water
and communicate between each other. We can effectively mon-
itor underwater structures and conditions with these features.
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